Civile.it
/internet
Osservatorio sul diritto e telecomunicazioni informatiche, a cura del dott. V. Spataro dal 1999, 10330 documenti.

Il dizionario e' stato letto volte.



Segui via: Email - Telegram
  Dal 1999   spieghiamo il diritto di internet  Store  Podcast  Dizionario News alert    
             



Consulenza privacy e e-commerce



L'Osservatorio contiene 10330 documenti sul diritto di internet.

  


WPkit.it: privacy, formulari, check up per WordPress

Temi attuali:
Algoritmi ChatGPT Intelligenza artificiale Privacy WordPress



Intelligenza artificiale 23.05.2024    Pdf    Appunta    Letti    Post successivo  

Linee guida per lo sviluppo della AI - l documenti

In Uk la proposta e' aperta a tutti coloro che le stanno scrivendo. Ce ne sono già molte.

Raccomando lo studio delle definizioni contenute nell'AI act, qui.


Valentino Spataro

 

L

L'AI Act è in arrivo, anche formalmente.

Nel frattempo si trovano online varie linee guida.

Queste alcune:

Analisi Gen AI, dal G7:

Based on the content you provided, here are the most repeated values in the document:

  • Safe, secure, and trustworthy: This phrase is used repeatedly throughout the document, particularly when discussing the development and deployment of AI and other digital technologies.
  • Sustainable: The document emphasizes the importance of sustainable development and the role of digital technologies in achieving the Sustainable Development Goals (SDGs).
  • Inclusive: The document stresses the need for inclusive digital transformation, ensuring that everyone benefits from the opportunities presented by digital technologies.
  • Resilient: The document highlights the importance of resilient digital infrastructure and supply chains, particularly in the context of global challenges and crises.
  • Open: The document emphasizes the need for an open and interoperable internet, as well as open collaboration and knowledge sharing among countries.
  • Global: The document stresses the importance of global cooperation and collaboration in addressing digital challenges and opportunities.

Analisi Gen AI, da ACN:

The document you provided is a set of guidelines for secure AI system development. It was published by the UK National Cyber Security Centre (NCSC), the US Cybersecurity and Infrastructure Security Agency (CISA), and several international partners.

The document covers four key areas:

  1. Secure Design: This section focuses on understanding risks, threat modeling, and making secure design choices for the AI system.
  2. Secure Development: This section emphasizes secure supply chain practices, proper documentation, and managing technical debt.
  3. Secure Deployment: This section covers securing infrastructure, protecting models from compromise, developing incident management procedures, and responsible release of the AI system.
  4. Secure Operation and Maintenance: This section focuses on monitoring the system's behavior and inputs, managing updates, and sharing information about security vulnerabilities.

The document also emphasizes the importance of "secure by design" principles, which prioritize taking ownership of security outcomes, embracing transparency and accountability, and building organizational structures that prioritize security.

The document is intended for providers of AI systems, but it is also recommended for other stakeholders, such as data scientists, developers, managers, and decision-makers.

To answer your specific request, the document does not explicitly list the most repeated values. However, it emphasizes the importance of:

  • Security: The document repeatedly stresses the importance of security in all stages of the AI system development lifecycle.
  • Transparency: The document encourages transparency in all aspects of the AI system, including documentation, data sources, and potential failure modes.
  • Accountability: The document emphasizes the importance of accountability for the security of AI systems.

These three values, security, transparency, and accountability, are consistently emphasized throughout the document.

---

The document you linked, "Guidelines for secure AI system development," provides a comprehensive framework for developing, deploying, and maintaining secure AI systems. Here are some key phrases and concepts highlighted in the document:

General Principles:

  • Secure by design: Emphasizes building security into AI systems from the outset, rather than as an afterthought.
  • AI security is different: Acknowledges the unique vulnerabilities of AI systems beyond traditional cybersecurity threats.
  • Adversarial machine learning (AML): Describes the exploitation of vulnerabilities in AI systems to induce unintended behaviors.
  • Supply chain security: Highlights the importance of securing the entire chain of components, data, and tools used in AI development.
  • Technical debt: Recognizes the need to manage technical compromises made for short-term gains, which can impact security in the long run.
  • Responsible release: Stresses the importance of thorough security evaluations and transparency about limitations before releasing AI systems.

Key Areas of Focus:

  • Secure design: Includes threat modeling, risk assessment, and choosing secure design choices for models, data, and infrastructure.
  • Secure development: Covers supply chain security, asset management, documentation, and technical debt management.
  • Secure deployment: Focuses on securing infrastructure, protecting models and data, incident management, and responsible release practices.
  • Secure operation and maintenance: Emphasizes monitoring system behavior and inputs, managing updates, and sharing information about security vulnerabilities.

Specific Considerations:

  • Model selection: Weighing security considerations against functionality, performance, interpretability, and data requirements.
  • Data protection: Protecting sensitive data used for training and inference, as well as user feedback.
  • Model hardening: Employing techniques like adversarial training and regularisation to improve model robustness.
  • Threat modeling: Identifying potential attackers, their motivations, and the potential impact of successful attacks.
  • Incident response: Developing plans to handle security incidents, including detection, containment, and remediation.
  • Transparency and accountability: Providing clear documentation and information to users about system limitations and potential risks.

The document emphasizes the need for a proactive and holistic approach to AI security, involving all stakeholders throughout the system's lifecycle. It provides practical guidelines and considerations for organizations to build secure and trustworthy AI systems.

23.05.2024 Valentino Spataro
Valentino Spataro


Formazione: La sfida della transizione digitale: il valore dei dati, cybersecurity e intelligenza artificiale
Ci trovate alla AI Week a Milano, maggio 2025
AiWeek - vi aspetto al più grande evento Europeo sull'Intelligenza Artificiale
Dubai: le leggi si fanno insieme all'intelligenza artificiale
Il cannocchiale di Galileo e il Dossier della Camera sulla intelligenza artificiale, pdl 2316
Guidelines 01/2025 on Pseudonymisation: negato lo status di dato soggettivamente non personale
SOLO PRO - Intelligenza Artificiale - Il testo approvato in prima…
PRO - Approvato il ddl 1146 - intelligenza artificiale vm 14 salvo…
Avvocati e intelligenza artificiale: la carta di Milano
US: Non c'e' violazione di copyright nell'addestramento. E il motivo impatta sulla Privacy



Segui le novità in materia di Intelligenza artificiale su Civile.it via Telegram
oppure via email: (gratis Info privacy)





dallo store:
visita lo store








Dal 1999 il diritto di internet. I testi sono degli autori e di IusOnDemand srl p.iva 04446030969 - diritti riservati - Privacy - Cookie - Condizioni d'uso - NM - i testi generati con ai (genai) possono essere sbagliati 0.025